토목기사 요약/철근콘크리트 및 강구조/PSC 기본개념 및 재료

위키배움터
둘러보기로 가기 검색하러 가기

18-2

PSC 보 휨 강도 계산 시 긴장재 응력 fps 계산은 강재 및 콘크리트의 응력-변형률 관계로부터 정확히 계산할 수 있으나 콘크리트구조기준에서는 근사적 방법을 제시하고 있다. 이유는 PS 강재의 응력은 항복응력 도달 이후에도 파괴시까지 점진적으로 증가하기 때문

PSC 특징[편집]

장단점 16-4

장점[편집]

  • PSC는 균열이 발생하지 않도록 설계하기 때문에 PSC부재는 강재의 부식 위험이 없고 고강도 재료를 사용하여 내구적인 구조물
  • PSC 부재는 과다한 하중으로 인하여 일시적인 균열이 발생하더라도 하중이 제거되면 균열은 다시 복원되므로 탄력성복원성이 강한 구조물이다.
  • PSC 부재는 완전 프리스트레싱 상태로 설계하는 것이 보통이므로 전 콘크리트 단면을 유효하게 이용할 수 있다. 또한 고강도 재료를 사용함으로써 단면을 줄일 수 있어서 같은 설계 하중 하에서 RC 부재보다 경간을 길게 할 수 있고 구조물이 날렵하므로 외관이 아름답다.
  • 안전성이 높다. PSC는 강재를 긴장시킬 때 최대 응력이 콘크리트와 PS 강재에 작용한 상태이므로 이때 안전하였다면 보통의 사용하중에서도 안전하다. 또한 PSC 부재는 파괴의 징조가 뚜렷하므로 사전 대비가 가능하다.
  • PSC 부재는 프리캐스트를 사용할 경우는 거푸집 및 동바리공이 불필요하다. 현장 PSC인 경우는 이어대기 시공이나 분할 시공이 가능하다.
  • PSC 부재는 풀 프리스트레싱인 경우 인장력을 받지 않으므로 부재의 처짐이 적다.

단점[편집]

  • PSC 부재는 가볍고 복원성이 풍부하지만, RC에 비하면 단면이 작기 때문에 변형이 크게 일어나고 진동하기가 쉽다.
  • 고강도 강재는 고온에 접하면 갑자기 강도가 감소하므로 PSC는 RC보다 내화성에 있어서는 불리하다.
  • PSC는 고강도 재료를 사용하므로 같은 설계하중에 대하여 RC보다 재료는 절약되지만 단가가 비싸고, 보조 재료(시스, 그라우팅 작업, 정착장치와 재킹 작업)가 많이 소요되므로 RC에 비하여 일반적으로 공사비가 많이 든다.

재료[편집]

PS 강재 요구 성질[편집]

  • 인장강도가 클 것.(고강도 철근의 약 4배) : 고강도일수록 긴장력 손실율이 작다.
  • 항복비가 클 것(80% 이상) : PS강재는 뚜렷한 항복점이 없다.
  • 릴렉세이션이 적을 것
  • 부착 강도가 좋을 것 : PS 스트랜드나 이형 PS강재가 부착력 우수
  • 직선성을 유지할 것.(코일 상으로 감아서 출하하는 PS 강선이나 PS 스트랜드를 풀었을 때 곧게 잘 펴져야 한다. 감은 지름은 소선 지름의 150배 이상이어야 함.
  • 응력 부식에 대한 저항성이 클 것(고인장 응력을 받는 PS 강재에 과도한 녹이나 작은 흠이 있으면 응력 집중으로 인해 부식이 촉진되는데 이를 응력 부식이라 함)
  • 적당한 늘음, 인성이 있을 것.
  • 피로에 대한 저항성이 클 것(철도교, 도로교)

PS 강재 탄성계수[편집]

시험에 의해 정하는 것이 원칙이나, 시험에 의하지 않을 때는 다음 값으로 해석해도 됨. 철근의 탄성계수와 같음

콘크리트 강도[편집]

PS 강재가 고강도이므로 콘크리트 강도도 고강도여야 함. 보통 28-40MPa. KDS 24 14 21 :2019 콘크리트교 설계기준(한계상태설계법) 1.5.7 프리스트레스트 구조물에 따르면 (81)

  • 프리텐션 방식 :
  • 포스트텐션 방식 :
Mono-strand post-tensioning process.png

프리텐션 방식에서 더 큰 강도가 요구되는 것은 콘크리트와 강재의 부착에 의해 긴장력이 전달되기 때문. 포스트텐션 방식은 부재 양단 정착에 의해 긴장력이 전달됨.

  • 프리텐션 : 강재를 긴장해두고 콘크리트 타설. 콘크리트가 경화된 뒤 강재 긴장 해제해서 콘크리트에 압축력을 줌.
  • 포스트텐션 : 콘크리트 타설 전에 거푸집에 덕트, 쉬스[1]를 만들어두고 타설. 콘크리트 경화한 뒤 강재를 긴장, 정착하여 콘크리트에 압축력을 줌.[2]


배합[편집]

건조수축과 크리프가 최소가 되도록 배합하고 양생해야 함. 일반적인 물-결합재비는 45% 이하로 해야 함.(현장 : 35-40%, 공장 : 33-35%)

긴장재[편집]

fpy : 기준 항복 강도, fpu : 기준 인장 강도

  • 긴장할 때 긴장재 인장응력 0.80fpu 또는 0.94fpy 중 작은 값 이하.
  • 프리스트레스 도입 직후
    • 프리텐셔닝 : 0.74fpu 또는 0.82fpy 중 작은값 이하.
    • 포스트텐셔닝 : 0.70fpu

기본 개념[편집]

설명문제(세 가지 '개념'들의 명칭 구분 (18-3)) + 계산문제(응력 개념 > 하중 평형 개념 > 내력 모멘트 개념)

  • 응력 개념 = 균등질보의 개념(계산 ♣♣♣)
  • 강도 개념 = 내력모멘트 개념(계산 ♣)
  • 하중 개념 = 하중 평형 개념 = 등가 하중 개념(♣♣)

응력 개념(균등질보의 개념)[편집]

계산 ♣♣♣

콘크리트에 프리스트레스가 가해지면 PSC 부재는 탄성체로 전환되고 이의 해석은 탄성이론으로 가능하다는 개념. 가장 널리 통용된다.

긴장재를 직선으로 도심에 배치한 경우[편집]

Prestressed concrete1.png

15-1, 18-3

압축과 휨이 작용한다는 의미로 보면 된다.

긴장재를 직선으로 편심배치한 경우[편집]

13-3, 14-3, 16-4

Prestressed concrete2.png

강도 개념(내력 모멘트 개념)[편집]

계산 ♣

RC와 같이 압축력은 콘크리트가 받고 인장력은 PS 강재가 받는 것으로 하여 두 힘에 의한 내력모멘트가 외력모멘트에 저항한다는 개념(16-2)

하중 개념(하중 평형 개념 = 등가 하중 개념)[편집]

♣♣

긴장력과 부재에 작용하는 하중(외력)을 같도록 만들게 한다는 개념으로 이 개념에 의하면 휨 응력이 발생하지 않고 압축력만 받는 부재로 전환된다.

긴장재를 포물선으로 배치한 경우[편집]

14-3, 15-2, 19-1

PSC1.png

등분포 상향력 u에 의한 최대 휨 모멘트는

긴장력 P에 의한 도심의 모멘트 M = P s

두 모멘트의 값은 같은 값이므로 상향력은 정리하면

순 하향 분포하중 : w - u

  • 만약 단순보에 작용하는 등분포하중 w가 상향력 u와 같다면 이 보에는 휨 응력이 생기지 않고 축방향력 P만 작용하게 된다.
  • w ≠ u이면 의 값을 에 대입하여 구하면 된다.

긴장재를 절선으로 배치한 경우[편집]

계산 15-2

Prestressed concrete3.png

힘의 평형조건 에 의해

상향력

로 인해 절선배치는 전단력을 감소시켜주는 효과가 있다.

각주[편집]

  1. 포스트텐션 방식에서 강재 삽입 위해 뚫어두는 구멍을 덕트(duct)라 하고 덕트 형성을 위해 쓰이는 관을 쉬스(sheath)라 함.
  2. http://kissulsa.com/30138151374